We report a development status of a focal plane detector for the GEO-X (GEOspace X-ray imager) mission that will perform soft X-ray (≤2 keV) imaging spectroscopy of Earth’s magnetosphere from a micro satellite. The mission instrument consists of a microelectromechanical systems (MEMS) X-ray mirror and a focal plane detector. A sensor with fine positional resolution and moderate energy resolution in the energy band of 0.3 to 2 keV is required. Because the observing target is the magnetosphere around the day-side Earth, the visible-light background must be decreased by shortening the integration time for readout. To satisfy the above requirements, a high-speed X-ray CMOS sensor is being evaluated as a primary candidate for the detector. Irradiating the flight candidate sensor with monochromatic X-rays, we obtained the energy resolution of 205 eV (FWHM) at 6 keV by cooling the devices to −15°C. Radiation tolerance of the sensor, especially in terms of total dose effect, is investigated with 100 MeV proton. The amount of degradation of energy resolution is <50 eV up to 10 krad, which ensures that we will be able to track and calibrate the change of the line width in orbit.
We are developing an x-ray CMOS detector for the GEO-X (GEOspace x-ray imager) mission that will perform soft x-ray (≤2 keV) imaging spectroscopy of Earth’s magnetosphere using a micro satellite. The mission instrument consists of a MEMS x-ray mirror and a focal plane detector. For the latter, we need a sensor with fine positional resolution and moderate energy resolution in the energy band of 0.3 to 2 keV. Because we observe the day-side structure of the earth’s magnetosphere, visible-light background must be decreased by shortening the integration time for readout. To satisfy the above requirements, a high-speed x-ray CMOS sensor is being evaluated as a primary candidate for the detector. We adopt back-side illuminated sensors that have been originally developed for visible-light or UV imaging. The sensors have different specification in terms of the thickness of epitaxial wafer and specific resistance. Irradiating sensors with monochromatic x-rays from 55Fe, we obtained the energy resolution of 205 and 227 eV (FWHM) depending on the sensor type for single pixel events at 6 keV by cooling down the sensor to −15°C. On the other hand, we found that the pulse height of the events whose charges spread over multiple pixels are significantly lower than that of single pixel events in some chips. Then we selected the chips that shows better charge collection efficiency as flight candidate. Radiation tolerance of the sensor, especially in terms of total dose effect, is investigated with 100 MeV proton. The amount of dose ranges up to 100 krad depending on position in the sensor. In spite of the excessive dose compared with 10 krad/yr in the expected highly elliptical orbit, Mn Kα and Kβ are well resolved. The amount of degradation of energy resolution is less than 50 eV up to 10 krad, which ensures that we will be able to track and calibrate the change of the line width in orbit We also utilize multi-color x-rays to investigate spectroscopic performance in the energy band of 0.5 to 7 keV. Multiple lines below 1 keV are resolved and energy resolutions are evaluated as well as linearity performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.