The semiconductor Bloch equations provide a very versatile and microscopic approach to compute and analyze optical and electronic properties of semiconductors. Here, we focus on high harmonic generation arising from the driving of crystalline systems with very strong optical and Terahertz pulses. Implementing a proper gauge allows us to solve the semiconductor Bloch equations in the length gauge. The length gauge turns out to be advantageous since it converges for a smaller number of bands than the velocity gauge and, in addition, enables a unique distinction between inter- and intraband contributions. Besides odd harmonics polarized parallel to the incoming field our approach also describes even harmonics which originate from the Berry curvature and are polarized perpendicular to the incident field. Next, we demonstrate that the electron and hole collision/recombination dynamics is mainly responsible for the anisotropy of the interband high harmonic generation. Our findings connect the electron/hole backward scattering to van Hove singularities and the forward scattering with critical lines in the band structure and we show that this dynamics can be controlled by properly designed two-color fields. Furthermore, we consider excitonic effects within a two-band model and show that they can strongly enhance the high harmonic emission intensity for suitably chosen incident pulses. When an odd-order harmonic corresponds to the energy of the 1s exciton this harmonic is several orders of magnitude larger than the emission from non-interacting electrons and holes.
The behavior of population transfer in a double-Λ system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. A time-dependent Schrodinger equation without the rotating wave approximation is solved. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.