We investigate both theoretically and experimentally the electro- magnetically induced transparency (EIT) phenomenon of atomic 87Rb at the room temperature with a static magnetic field lifting the degeneracy of all three involved hyperfine levels. Two collinearly propagating and linearly polarized laser fields (a probe field and a coupling field) are used to couple one hyperfine level (the upper level) of the 5P1/2 state to two hyperfine levels (the lower levels) of the 5S1/2 state, respectively. In the case of zero magnetic fields, we observed a deep EIT window with the contrast of about 66%. Here, the EIT window width is limited by both the spontaneous decay rate of the upper level and the coupling field intensity. When a magnetic field parallel to both laser beams is applied, the EIT window is split into three much narrower sub-windows with contrasts of about 32%. If the magnetic field is perpendicular to the laser beams, however, the EIT window is split into four much narrower sub-windows whose contrasts are 32% or 16%. This is because the decomposition of the linearly polarized optical fields strongly depends on the orientation of the used magnetic field. The underlying physics is that, in the limit of a weak probe field, an ideal degenerate three-level system can be split into three or four sets of independent three-level systems by a magnetic field due to the lifting of magnetic sublevels of the involved hyperfine levels. In this paper the absorption spectra corresponding to different magnetic field directions are clearly shown and compared. And a straightforward but effective theoretical method for analyzing the experimental results is put forward. Our theoretical calculations are in good agreement with the experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.