We propose and demonstrate a photonic approach to generate and transmit a quadrupling-bandwidth dual-chirp microwave waveform with anti-dispersion transmission. Commonly, dual-chirp microwave waveforms are generated by double-sideband modulation, which brings severe chromatic-dispersion-induced power fading (CDIP) over fiber transmission. In this scheme, we perform optical carrier suppression via a polarization controller based on an integrated polarization-division multiplexing Mach–Zehnder modulator (PDM-MZM) to eliminate the CDIP. Moreover, by properly adjusting two bias voltages of PDM-MZM, we find that the bandwidth of the generated dual-chirp microwave signal is quadrupled. It is worth mentioning that we just need to operate in the central office to realize the above-mentioned functions and no optical filters are needed, which significantly improves the limitation of the devices. The method is analyzed theoretically and proved experimentally, which is of great significance for improving range-Doppler resolution and the detection capability of radars for one-to-multi base stations over fiber transmission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.