To minimize the assembly stress and thermal stress introduced by the support structure, and ensure the high surface accuracy and high thermal stability of space mirror. An ultra-lightweight design of secondary mirror was carried out for some space remote sensor, and three tangential bipods were used for quasi-kinematic support. Firstly, the design principle of quasi-kinematic support structure was investigated, and advantages of bipod kinematic support were analyzed from the angle of degree of freedom decoupling. Based on structure designed above, the finite element model was established. Taking surface accuracy of the mirror as optimization objectives, the integrated optimization method was adopted to extract the structural parameters with high sensitivity on the surface accuracy in the flexible support structure, and parameters optimization design was carried out. Finally, the static and dynamic characteristics of the optimized mirror assembly were analyzed. The analysis results showed that the surface shape accuracy (RMS) of the mirror assembly is better than 1 nm under a load case of 1g gravity when the optical axis is level. Surface accuracy (RMS) is better than 2 nm under the load case of 4℃ uniform temperature rise. The first-order natural frequency of the secondary mirror assembly is 587 Hz. The optimized mirror support structure can well unload the additional deformation caused by the support structure, and has good dynamic stiffness, which verifies that the designed mirror and its support structure are reasonable, and the optimization design method is reliable. This paper provides a reference and idea for the design of flexible support structure of space mirror.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.