The main contribution of this work is the proposal of a densely connected convolutional network for semantic segmentation, which strengthens utilization of features and improves segmentation results even with limited training samples. To achieve this, we combine the U-Net network and our resulting system is called Dense-U-Net. Compared to traditional convolutional networks such as U-Net, there are additional concatenation layers between each pair of convolutional layers which have the same size of outputs in our Dense-U-Net, each layer can get the feature-maps of all its preceding layers as inputs while its feature-maps can be passed to all subsequent layers, and a higher segmentation quality can be achieved without a need for increasing the volume of datasets finally. We evaluate our proposed architecture by segmentation accuracy, foreground-restricted rand scoring after border thinning VRand and foreground-restricted information theoretic scoring after border thinning VInfo at the same time, and the results are shown on three different segmentation tasks: ISBI challenge 2012 for segmentation of neuronal structures in electron microscopic stacks, ISBI cell tracking challenge 2014(Glioblastoma-astrocytoma U373 cells) and 2015(HeLa cells), our Dense-U-Net achieves better results than U-Net and several other state-of-the-art networks on all tasks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.