KEYWORDS: Animals, Modeling, Digital photography, Color, Evolutionary algorithms, Artificial intelligence, Systems modeling, Visualization, Computer simulations, RGB color model
The object of the study is the procedure for modeling adaptive strategies for the functioning of the protective coloration of a frog (Pelophylax esculentus) using Altshuller’s innovation algorithm. Verbal modeling by means of the Altshuller’s innovation algorithm using natural language was duplicated by the use of artificial intelligence tools. The systemic aspects of the functioning of the protective coloration of animals are extremely complex. This complexity sometimes creates obstacles of a fundamental nature for their formalized description. We are talking about a formalized description by means of mathematics and computer science. This problem can be solved by using verbal modeling by means of natural language. In particular, the means that are used in the Altshuller’s innovation algorithm. With the use of these means were formulated: the ideal goal of the functioning of the leaking coloration of the animal, the contradiction that impedes the achievement of this goal, the way to resolve this contradiction. As a goal, an adaptive strategy for the functioning of the protective coloration of the animal, which ensures its camouflage and prevents its unmasking, was adopted. The achievement of this goal is hampered by the contradiction in the requirements for the diversity of the protective coloration of the animal. The approach presented in this paper to the study of adaptive strategies for the functioning of the protective coloration of animals is interesting for the development of remote (aerospace) methods for recording aquatic animals.
KEYWORDS: Information technology, Mathematical modeling, Digital micromirror devices, RGB color model, Digital photography, Cardiovascular system, Blood pressure, Heart, Systems modeling, Animal model studies
The paper aims to study the criteria of harmony by example of protective coloration for antelopes and dynamics of the parameters for human cardiovascular system at different stages of obesity. The criteria of harmony reflecting the adaptive mechanisms of the biological objects under consideration are obtained. In the case of antelopes (Taurotragus oryx), criteria of harmony chosen were colorimetric parameters of protective coloration, subjected to change due to the domestication of these animals. In the case of the human cardiovascular system, the parameters of heart rate, systolic blood pressure and diastolic blood pressure were selected. The results of the simulation show that the increase in body weight, due to hypodynamia in women, leads to a deterioration of the harmony of the dynamics of the cardiovascular system. As a criterion of harmony, the variety of combinations of values observed in the cycle of changes of these parameters built in the result of modeling is used. A similar dependence takes place in the example of protective coloration of antelopes. As a criterion of harmony, in this case, a variety of combinations of colorimetric parameters of the protective color of antelopes is used. The results of mathematical modeling obtained in the work allow us to propose a new approach to finding a universal criterion of harmony of living systems related to biodiversity and adaptation to living conditions.
This study aims at mathematical modeling of systemic factors threatening the sanitary and hygienic state of sources of water supply. It is well-known, that this state affects health of population consuming water from different water sources (lakes, reservoirs, rivers). In particular, water quality problem may cause allergic reactions that are the important problem of health care. In the paper, the authors present the mathematical model, that enables on the basis of observations of a natural system to predict the system's behavior and determine the risks related to deterioration of drinking water resources. As a case study, we uses supply of drinking water from Lake Sevan, but the approach developed in the study can be applied to wide area of adjacent problems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.