In this manuscript, we develop a 3D-printing based microfluidic device for light scattering imaging of single cells. A rapid fabrication method to make microfluidic device that enables 3D-hydrodynamic focusing by utilizing 3D printing technique is proposed. The focusing effect of the microfluidic cytometer was measured and shows the ability to confine the cells to flow near the center stream along the channel. Also, the standard beads with 9.51 μm in diameter were used to test the reliability of the device. The collected light scattering images are in good agreement with simulation results. We suggest that the 3D-printing based light scattering microfluidic device is in principle applicable for fast, label-free detection of single cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.