We report on the first observation of tertiary reaction-in-flight (RIF) neutrons produced in compressed deuterium and tritium filled capsules using the National Ignition Facility at Lawrence Livermore National Laboratory, Livermore, CA. RIF neutrons are produced by third-order, out of equilibrium (“in-flight”) fusion reactions, initiated by primary fusion products. The rate of RIF reactions is dependent upon the range of the elastically scattered fuel ions and therefore a diagnostic of Coulomb physics within the plasma. At plasma temperatures
of ∼5 keV, the presence of neutrons with kinetic energies greater than 15 MeV is a unique signature for RIF
neutron production. The reaction 169Tm(n,3n)167Tm has a threshold of 15.0 MeV, and a unique decay scheme making it a suitable diagnostic for observing RIF neutrons. RIF neutron production is quantified by the ratio of 167Tm/168Tm observed in a 169Tm foil, where the reaction 169Tm(n,2n)168Tm samples the primary neutron fluence. Averaged over 4 implosions1–4 at the NIF, the 167Tm/168Tm ratio is measured to be 1.5 ± 0.3 x 10−5, leading to an average ratio of RIF to primary neutron ratio of 1.0 ± 0.2 x 10−4. These ratios are consistent with the predictions for charged particle stopping in a quantum degenerate plasma.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.