We describe the application of wavefront coding technique for infrared imaging system to control thermal defocus. For traditional infrared imaging system, athermalization is necessary to maintain imaging performance which may increase complexity and cost of the imaging system. Wavefront coding includes a phase mask at the pupil which can re-modulate wave front so as to produce an encoded image. After digital processing, the system is insensitive to defocus. In this paper, the combination of wavefront coding technique and infrared imaging system has been discussed. We report here the optic design of the wavefront coding IR system based on Zemax. The phase mask is designed to ensure that the modulation transfer function (MTF) is approximately invariant in the range of working temperature. Meanwhile, we designed three IR systems to put up contrast experiments. System one and two are designed to compare the influence before and after the insertion of phase mask. System three is designed to compare the imaging performance before and after reducing lens in wavefront coding IR system. The simulation results show that the infrared imaging system based on wavefront coding can control thermal defocus in a temperature varying from -60ºC to 60 ºC, at the same time the weight and cost of optical elements are reduced by approximately 40%.
This paper proposes a method to recover the pulse signal with the theory of lock-in amplifier and calculates the oxygen saturation. The pulse signal is obtained based on the method of Photoplethysmography (PPG). We use a LED as the light source and a photoelectric diode as the receiver to get a measured pulse wave. Because the pulse wave obtained by this method is easily disturbed by motion artifact, we use an electrocardiogram (ECG) signal to aid PPG measurement. Firstly, the ECG signal is processed by the Fast Fourier Transform (FFT) and get the heart rate. Secondly, with the value of heart rate, a typical noise free pulse waveform can be constructed. Finally, we use it as a reference input to get a recovered pulse wave by the theory of lock-in amplifier. Thus, the value of oxygen saturation can be calculated accurately through two recovered pulse waveforms of red (660nm) and infrared (940nm) light. Some volunteers were tested. The correlation coefficient between the experimental data and the data provided by a reference instrument is 0.98, proving that this method has high reliability and utility in motion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.