The paper shows the experimental results of the substrate temperature effect on the morphological and electro-physical parameters of nanocrystalline BaTiO3 films fabricated by pulsed laser deposition. It was found increasing in the substrate temperature from 300 °C to 600 °C results in decreasing in surface roughness from (6.1±0.6) nm to (0.8±0.1) nm and increasing in the films grain size from (39.1±3.1) nm to (212.1± 17.2) nm. Increasing in the substrate temperature leads to a change in electro-physical parameters: the concentration of charge carriers increases from (1.85±0.16)×1013 cm-3 to (2.77±0.25)×1013 cm-3, the mobility of charge carriers decreases from (10.1±0.9) cm2/(V·s) to (7.2±0.6) cm2/(V·s), and the resistivity of the films changes insignificantly from (3.4±0.2)×103 Ω·cm to (3.1±0.2)×103 Ω·cm under increase in the temperature from 300 °C to 600 °C. The obtained results make it possible to get BaTiO3 films with target parameters, which can be used to develop promising lead-free energy harvesters for alternative energy devices.
Memristor effect in ZnO thin films was investigated. It was shown, that increase in the number of laser pulses during the formation of a thin ZnO film from 1000 to 3000 leads to increase resistance of ZnO film in the high resistance state (HRS) from 28.31±8.27 kΩ to 1943.53±123.11 kΩ and decrease resistance of ZnO film in the low resistance state (LRS) from 3.85±2.15 kΩ to 3.22±1.32 kΩ, respectively. Memristor structure fabrication technique was developed. Al2O3/TiN/ZnO/Ti memristor structure was fabricated and investigated. Resistive switching from HRS to LRS occurred at 0.4±0.1 V, and from LRS to HRS at -0.72±0.2 V. Endurance test shown that HRS is 72.41±6.22 kΩ, LRS is 1.05±0.32 kΩ. It was shown, that HRS/LRS ratio was about 69.7 at read voltage 0.3 V. As a result, Al2O3/TiN/ZnO/Ti memristor structure fabrication allowed to decrease switching voltage from 3.2±0.6 V to 0.4±0.1 V for SET, and from -3.5±1.1 V to -0.72±0.2 V for RESET, decrease current from 0.9±0.4 mA to 5.2±2.2 μA, and get less resistance dispersion, than Al2O3/TiN/ZnO structure.
This work shows the results of studies on the effect of annealing on the properties of nanocrystalline LiNbO3 films. Unannealed LiNbO3 films are characterized by the formation of triangular grains and large droplets on the film surface. It has been shown that annealing in an oxygen atmosphere leads to significantly reducing the surface roughness of the films (from 63 to 47 nm) and the density of droplets on the LiNbO3 film surface. It was established that annealing within 1 hour in oxygen atmosphere under temperature of 600°C allows increasing oxygen content in the film from 4.03 atm. % up to 11.02 atm. %. Using annealing made it possible to reduce the maximum value of absorption rate from 1.11 to 0.29. Obtained results can be used under development of energy converters and acousto-optic devices for use in electronics and medicine.
The paper presents the experimental results of the combination of AFM lithography and plasma chemical etching the surface of the gallium arsenide samples. Results dilution and application modes for AFM lithography photoresist, also shown on the image forming modes photoresist surface. Showing results nanoprofilirovaniya surface. Results regimes plasma chemical etching. The analysis of the etching rate is etched surface roughness was studied by atomic force microscopy. Judged from the vertical deflection angle of the initial structures and photoresist obtained after etching.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.